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1. FINITE-DIMENSIONAL 

VECTOR SPACES 
 

§1.1. Axioms 
 This may be your first encounter with an axiomatic 

system. So, here’s some general discussion about what it 

means to define a mathematical structure by axioms. 

 The father of axioms was Euclid. He developed 

Euclidean Geometry by starting with some axioms. For 

him, axioms were self-evident truths, such as: 

 

• Every two distinct points lie on exactly one line. 

and 

• Given a line, and a point that does not lie on that line, 

there is exactly one line through the given point 

parallel to the given line. 

 

 

 

 

 Now Euclid was attempting to make a 

mathematical model of a plane in our real universe and in 

fact, these axioms are far from self-evident. 

 Well, they seem reasonable enough for lines drawn 

on a sheet of paper, or in the sand. But what if there are 

many lines through the same pair of points? What if there 

is a line through a given point almost parallel but not one 
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exactly parallel. If ‘parallel’ means never intersect, how 

can we tell that the line we draw satisfying the 

assumptions in the second scenario, might not meet the 

first line if both lines were extended a billion miles. 

 

 In fact, in the nineteenth century, some geometers 

played with the second of these axioms and constructed a 

couple of non-Euclidean geometries, Elliptic Geometry 

and Hyperbolic Geometry. Although Euclidean 

Geometry, in its 3-dimensional version, is a quite accurate 

model for our spatial world, some cosmologists believe 

that one or other of these non-Euclidean geometries is 

more accurate for the whole cosmos. 

 

 Axioms, in the sense that we are using the term 

here, arose towards the end of the eighteenth century. 

Early in that century, the French mathematician Galois 

invented the concept of a group, and developed a 

considerable amount of the theory of groups. 

 Now Galois was concerned with polynomials, and 

their zeros (values of x that make the polynomial P(x) 

equal to zero). For him the group consisted of 

rearrangements of the zeros of the polynomial. 

 Then somebody realised that the things being 

permuted didn’t have to have anything to do with 

polynomials, and so the groups were groups of 

‘substitutions’ or, as we would say, rearrangements of any 

collection of numbers. 
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 A considerable amount of the theory of 

Permutation Groups was developed. But somebody once 

noticed that everything could be proved from just four 

axioms. Group Theory was the first branch of 

mathematics to become abstract. 

 The modern concept of a group is that it consists of 

a set of ‘things’. They could be numbers, or polynomials, 

or matrices, or permutations, or even the four different 

ways of rotating a mattress. 

 There is assumed to be an undefined operation, 

called ‘multiplication’ that combines any two of these 

things to produce one of them. 

 For any group we need to know what the elements 

are and how x  y is defined. If the elements of the group 

are numbers we might define x  y to be ordinary 

multiplication. Or it could be ordinary addition. There is 

a group of real numbers where x  y is defined by: 

x  y = x + y + xy. 

 If the elements of the group are permutations we 

may define the product to be the result of performing one 

permutation followed by another (or even, for x  x, the 

operation of performing x twice. 

 If there is any danger of confusing x  y with 

ordinary multiplication we need to continue using this 

rather cumbersome notation. But otherwise, we write it as 

xy.  

 Now, as I said, for a specific example of a group 

we need a definition of the set of things, as well as a 

definition of multiplication. But if we are developing the 
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theory we can consider the set to consist of undefined 

‘things’ and the multiplication to be undefined. However 

we need to make certain assumptions in order to prove 

theorems. These we call the group axioms. Far from being 

‘self-evident truths’ they are part of the definition of a 

group. 

 

 A group is a set G, containing a specific element, 

denoted by 1, a function x → x−1 from G to G, and a binary 

operation xy, such that the following 4 axioms hold: 

 

THE GROUP AXIOMS 

(1) (Closure under multiplication): xy  G. 

(2) (Associativity under multiplication): x(yz) = (xy)z.  

(3) (Identity under multiplication): 1x = x = x1. 

(4) (Inverses under multiplication): xx−1 = 1 = x−1x. 

 

 The whole of Group Theory can be developed 

using only these 4 axioms. Any theorem we prove will 

hold for any group, no matter what the elements are or 

what the operation is – provided these axioms hold. 

 

 

NOTES: 

(1) Axiom (1) is really redundant, because the fact that 

x  y  G is part of the definition of a binary operation. 

However it is included for emphasis. 

(2) The Associative Law is important because, without it, 

the expression xyz would be ambiguous. Moreover 
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powers of x, where x
n
 denotes x  x  …  x, with n 

factors, would be ambiguous and would depend on the 

order in which the operations are carried out. 

Is x4 = ((x  x)  x) x or (x  (x  x))  x or 

x  ((x  x)  x) or x  (x  (x  x))? 

Without the associative law these might all be different. 

 

(3) If G is a group of numbers, don’t assume that 1 

represents the number 1. In some groups it might be 0 – 

in others it could be − 1. If there is danger of confusion 

we write the identity as e. And by ‘e’ I don’t mean the 

special exponential number. 

 

(4) We never write x−1 as 
1

x
 because fractions can be 

ambiguous. Does 
y

x
  mean x−1y, or yx−1? Without the 

commutative law these could be different. 

 

 There’s a 5th axiom that can be added, which gives 

rise to the definition of a commutative group. 

  

(5) (Commutativity under multiplication): xy = yx. 

 

 A commutative group is one that satisfies all 5 

axioms. Commutative groups are more usually called 

abelian groups, after the Norwegian mathematician Abel. 

The theory of abelian groups is a subset of Group Theory 

as a whole. 
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 If you want to explore the rich world of Group 

Theory you can find an account in my notes on Group 

Theory. 

 The axiomatic approach proved so successful that 

it has crept into most branches of mathematics. In abstract 

algebra we have groups, semigroups, rings, fields, vector 

spaces. Topology begins with the axioms for a topological 

space. Set Theory starts with the ZF axioms. Different 

geometries usually begin with a set of axioms. Calculus 

has gone abstract at advanced levels. There we call the 

study Analysis, and we might begin a course in Analysis 

with the axioms for a Hilbert Space. 

  

§1.2. Fields 
 By now you’ll have acquired a fair knowledge of 

matrices. These are a concrete embodiment of something 

rather more abstract. Sometimes it’s easier to use 

matrices, but at other times the abstract approach allows 

us more freedom. 

 A field F, is a set, together with two operations, 

addition (written x + y) and multiplication (written xy) 

such that the following 

properties (called the 

field axioms) hold. In 

addition there are two 

special elements of F, 0 

and 1, which are not 

equal. Also, for all x  F 
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there are elements −x and, unless x = 0, x−1. All of these 

properties are required to hold for all x, y, z  F. 

 

FIELD AXIOMS 

(1) (Closure under addition): x + y  F. 

(2) (Associativity under addition): 

x + (y + z) = (x + y) + z. 

(3) (Commutativity under addition): x + y = y + x. 

(4) (Identity under addition): x + 0 = x = 0 + x 

(5) (Inverses under addition): x + (−x) = 0 = (−x) + x. 

(6) (Closure under multiplication): xy  F. 

(7) (Associativity under multiplication): x(yz) = (xy)z.  

(8) (Commutativity under multiplication): xy = yx. 

(9) (Identity under multiplication): 1x = x = x1. 

(10) (Inverses under multiplication): xx−1 = 1 = x−1x. 

(11) (Distributivity): 

x(y + z) = xy + xz and (x + y)z = xz + yz. 

 

NOTES: 

(1) We insist that 0 and 1 are distinct. So the smallest 

possible field has 2 elements. 

 

(2) The existence of a multiplicative inverse only extends 

to non-zero elements. If you allowed 0−1 you would be 

able to prove that all elements were equal, which doesn’t 

give any useful examples. 

 

(3) Several axioms have two equalities, one of which is 

redundant because of one of the commutative laws. For 
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example we say xx−1 = 1, as well as 1 = x−1x. The reason 

for this is so that we can consider the axioms 

independently. There are algebraic systems where the 

commutative law for multiplication doesn’t hold, yet both 

halves of the inverse law for multiplication do. 

 

(4) Axioms (6) – (10) mimic axioms (1) – (5), though 

there is a subtle difference between axioms (5) and (10) 

in so far as axiom (10) only holds for non-zero x. 

(5) Axioms (1) – (5) are the axioms for a commutative 

group. So are axioms (6) – (10), but with different 

notation. Together they say that a field is a commutative 

group under addition and the non-zero elements are a 

commutative group under multiplication. 

 But it is the distributive law that binds the two 

structures together it. Without it we would have two 

completely separate structures that happen to live in the 

same body, like Dr Jekyll and Mr Hyde. 

 

(6) There are other laws that we insist on for all fields, but 

they are not listed as axioms because they are 

consequences of these 11 axioms. Such a law is the one 

that says that 0x = 0 = x0.  

 

Example 1: The following are examples of fields: 

ℚ, the set of rational numbers. 

ℝ, the set of real numbers. 

ℂ, the set of complex numbers. 

ℚ[2] = {a + b2 | a, b  ℚ}. 
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The associative, commutative and distributive laws hold 

throughout the system of complex numbers, so the only 

axioms that need to be checked are the closure, identity 

and inverse laws. For ℚ, ℝ and ℂ these are obvious. Let 

us check them for ℚ[2]. 

 

(a + b2) + (c + d2) = (a + c) + (b + d)2, so ℚ[2] is 

closed under addition. 

(a + b2)(c + d2) = (ac + 2bd) + (ad + bc)2, so ℚ[2] 

is closed under addition. 

ℚ[2] clearly contain both 0 and 1 so the identity laws 

hold. 

−(a + b2) = (−a) + (−b)2 and 

1

a + b2
 = 

a − b2

a2 − 2b2  = 
a

a2 − 2b2  + 






− b

a2 − 2b2  2 

so ℚ[2] is closed under both additive and multiplicative 

inverses. 

 

 There are certain properties of field that are 

consequences of these field axioms. For example there’s 

no axiom that says that 0x = 0. However if we consider 

that 0x = (0 + 0)x = 0x + 0x we reach this conclusion (with 

the help of the additive identity axiom and the distributive 

law). 

 The cancellation law that we constantly use in basic 

algebra is not one of the 11 axioms but is a consequence 

of them. If ab = 0 then a = 0 or b = 0. For if a  0 then a−1 

exists and if ab = 0 then 0 = a−1(ab) = (a −1a)b = 1b = b. 
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Theorem 1: If p is prime then ℤp = {0, 1, 2, … , p − 1} is 

a field under addition and multiplication modulo p (where 

we add and multiply normally but then take the remainder 

on dividing by p). 

Proof: All the field axioms are obvious except for 

inverses under multiplication. 

Suppose x is a non-zero element of ℤp. Regarding x as an 

integer this means that x is not divisible by p. In other 

words,  x  is coprime to p. This means that ax + bp = 1 for 

some integers a, b. Now, interpreting this modulo p this 

becomes ax = 1, so x has an inverse under multiplication. 
☺ 

 

Example 2: In ℤ13 the following table gives the inverses 

under addition and multiplication for the non-zero 

elements. 

x 1 2 3 4 5 6 7 8 9 10 11 12 

−x 12 11 10 9 8 7 6 5 4 3 2 1 

x−1 1 7 9 10 8 11 2 5 3 4 6 12 

 

Integers that are 1 plus a multiple of 13 include 

14, 27, 40, 53, 66, 79 and 92. 

So, for example, 10  4 = 40 = 1 mod 17 and so 10 and 4 

are inverses of one another under multiplication. 

Then, since 7 = − 6, 7−1 = − 6−1 = − 11 = 2. 

 

 If p is not prime, however, ℤp is not a field because, 

if p = ab for some integers a, b where 1 < a, b < p, then 

modulo p we would have  ab = 0 while a  0 and b  0. 
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 So the only systems of integers modulo p that give 

fields are those where p is prime. But these are not the 

only finite fields. For every prime power pn there exists a 

field with pn elements (and for no other sizes). Tthe field 

of order pn (there is only one) is not ℤpn, unless n = 1. 

 

Example 3: The following are the addition and 

multiplication tables for the field with 4 elements: 

+ 0 1 2 3   0 1 2 3 

0 0 1 2 3  0 0 0 0 0 

1 1 0 3 2  1 0 1 2 3 

2 2 3 0 1  2 0 2 3 1 

3 3 2 1 0  3 0 3 1 2 

 

Now let us look at a few properties that we insist on for 

fields, but which are consequences of the 11 axioms and 

therefore don’t have to be included among the axioms. 

 

Theorem 2: If x + y = x + z then y = z. 

Proof: Suppose that x + y = x + z. 

 −x + (x + y) = −x + (x + z) 

 (−x + x) + y = (−x + x) + z by Axiom (2) 

 0 + y = 0 + z by axiom (5) 

 y = z by axiom (4) 

 

Theorem 3: 0x = 0 = x0 for all x in a field. 

Proof: 0x + 0 = 0x = (0 + 0)x, by Axiom (4) 

                                = 0x + 0x by Axiom (11) 

 0 = 0x by Theorem 2. Similarly x0 = 0. 
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 One of the deep mysteries, when you first learnt 

algebra, was probably why (−x)(−y) = xy. I remember my 

teacher fobbing me off with the explanation that “two 

negatives make a positive – after all, if you’re not unkind, 

you’re kind.” 

 This seemed to satisfy me then. I didn’t reply, “well 

if two negatives make a positive why isn’t −1 plus −1 

equal to plus 2?” 

 But any explanation along the lines of double 

negatives is totally invalid. I suppose I was grateful that 

my teacher didn’t try to explain it properly. Here’s a 

proper proof. 

 

Theorem 4: (−x)(−y) = xy for all x, y in a field. 

Proof: [xy + x(−y)] + (−x)(−y) = xy + [x(−y) + (−x)(−y)] 

                                                                   by Axiom (2) 

 [x(y + (−y)] + (−x)(−y) = xy + [x + (−x)](−y) 

                                                                    by Axiom (11) 

 x0 + (−x)(−y) = xy + 0(−y) by Axiom (5) 

 0 + (−x)(−y) = xy + 0 by Theorem (3) 

 (−x)(−y) = xy by Axiom (4) 

 

§1.3. Vector Spaces 
 A vector space over a field F is a set V, together 

with a specific element 0  V, and a function v → −v 

from V to V, such that the following 10 axioms hold. 
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VECTOR SPACE AXIOMS 

(1) (Closure under addition): u + v  F. 

(2) (Associativity under addition): 

x + (v + w) = (u + v) + w. 

(3) (Commutativity under addition): u + v = v + u. 

(4) (Identity under addition): v + 0 = v = 0 + v 

(5) (Inverses under addition): v + (−v) = 0 = (−v) + v. 

(6) (Closure under scalar multiplication): v  V. 

(7) (Associativity under scalar multiplication): 

(v) = ()v. 

(8) (Identity under scalar multiplication): 1v = v. 

(9) (Inverses under multiplication): xx−1 = 1 = x−1x. 

(10) (Distributivity): 

(u + v) = u + v and ( + )v = v + v. 

 

NOTES: 

(1) You may wonder why we haven’t printed the vectors 

u, v, w in bold type. That is done when you first learn 

about vectors so that you can see clearly which are vectors 

and which are scalars. So we wrote v to emphasise that 

 is a scalar and v is a vector. However there’s nothing in 

the set of axioms for a vector space that says that vectors 

and scalars are different things. There are examples where 

the field F is a subset of the vector space V and so the 

elements of F are both vectors and scalars. 

 

(2) There is some similarity between the vector space 

axioms and the field axioms. In fact the first 5 axioms are 
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the same in both cases. Both fields and vector spaces are 

abelian groups under addition. 

 When it comes to multiplication we only define the 

product of a scalar (element of F) with a vector (element 

of V). Moreover we always write the scalar before the 

vector, so there is no commutative law for scalar 

multiplication. 

  

Example 4: ℂ is a vector space over ℝ. Here the real 

numbers are scalars, and the complex numbers are the 

vectors. But the real number are also scalars. 

 This situation occurs whenever you have a subfield 

of a larger field. If you go through the 10 axioms, in the 

situation where F is a subfield of V, you will find that the 

10 vector space axioms are direct consequences of the 

field axioms. 

 In the area of mathematics that studies fields 

(Galois Theory) the theory of vector spaces plays an 

important role. 

   

Example 5: For any field F, Fn is the set of all n-tuples 

(x1, x2, …, xn) where each xi  F and where addition and 

scalar multiplication are defined in the usual way. It’s 

easily seen to be a vector space over F. 

 

Example 6: Consider 3-dimensional Euclidean space. 

This is a vector space over ℝ as follows. The vectors are 

the directed line segments from the origin to a point. The 
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scalars are the real numbers. Addition is defined by 

completing a parallelogram. 

 

 

 

 

 

 

 

 

Multiplying a non-zero vector v by a positive scalar  

produces a vector with the same direction as v but with  

times the length. Multiplying by a negative scalar 

magnifies the length and reverses the direction. And, of 

course 0v = 0 = 0 for all vectors v and scalars . 

 Clearly this is essentially the same as ℝ3. We will 

make the concept of ‘essentially the same’ precise in a 

later chapter. 

 

Example 7: For any field F, F is the set of all infinite 

sequences (x1, x2, …) with each xi  F and with addition 

and multiplication defined in the obvious way. 

 

Example 8: For any field F, F[x] is the set of all 

polynomials anx
n + an−1x

n−1 + … + a1x + a0 where each xi 

 F and n is any non-negative integer. Addition and scalar 

multiplication are defined in the obvious way. F[x] is 

clearly a vector space over F. Note that we could write the 

polynomial as an infinite sequence (a0, a1, …), but F[x] 

u 

v 

u + v 

O 
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differs from F in that here all the components from some 

point on are zero. 

 

Example 9: For any field F, Mn(F) is the set of all n  n 

matrices with the usual addition and scalar multiplication. 

This is clearly a vector space over F. 

 

Example 10: Let V = {1, 2, 3}, that is the set of all 

subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and let the field of 

scalars be F = ℤ2 = {0, 1} with addition and multiplication 

mod 2. 

 Define S + T = S  T − S  T. 

Then {1, 3, 7} + {3, 5, 7, 8} = {1, 3, 5, 7, 8} − {3, 7} 

                                               = {1, 5, 8}. 

 For all subsets S, define 0S =  = { }, the empty 

set and 1S = S . 

 This strange vector space has 210 = 1024 elements. 

The zero vector is  and S + S =  for all subsets S. 
 

 Up to this point the vector spaces have had 

recognisable components. In the next example this is not 

the case. 

 

Example 11: Diff(ℝ) is the set of all differentiable 

functions from the reals to the reals. The sum of two 

differentiable functions f(x) and g(x) is the differentiable 

function f(x) + g(x) and the scalar multiple of the 

differentiable function f(x) by the scalar  is the 
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differentiable function f(x). Thus the closure laws hold. 

The remaining axioms are just as obvious. 

The function f(x) = x2 belongs to Diff(ℝ). But what are its 

components? 

 

 Spaces of functions are very important in the 

deeper study of analysis. 

 

§1.4. Subspaces 
 A subspace of a vector space is a non-empty subset 

that is closed under addition and scalar multiplication. 

The fact that −v = (−1)v guarantees that a subspace is also 

closed under inverses. Note too that if V is any vector 

space {0} is a subspace of V, as is V itself.  

 If U is a subspace of V we write U  V. Every 

vector space is a subspace of itself, but if we want to 

emphasise that U is not the same as V we can write U < 

V and say that U is a proper subspace of V. 

 

Examples 12: 

(1) {(x, y, z)  ℝ3 | z = x + y} is a subspace of ℝ3. 

(2) {(x, y, z)  ℝ3 | 3x + 2y + 5z = 0 and 7x − y + 2z = 0} 

is a subspace of ℝ3. 

(3) A plane that passes through the origin is a subspace of 

3-dimensional space. 

(4) The set of differentiable functions from ℝ to ℝ is a 

subspace of the set of continuous functions from ℝ to ℝ, 

which in turn is a subspace of the set of all functions from 

ℝ to ℝ. 
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(5) The set of convergent sequences is a subspace of ℝ. 

(6) The set of diagonal n  n matrices is a subspace of the 

space of all n  n matrices. 

(7) ℚ  ℝ  ℂ. 

(8) In Example 3, ℤ2 is a subspace of the field with 4 

elements. 

(9) For any vector space V {0}  V. 

 

 There are 10 axioms for a vector space, but axioms 

(3), (4), (7), (8), (9) and (10) will automatically be 

inherited by any subset. If the subset is non-empty we can 

dispense with (5) and (6) as well. 

 

Theorem 5: If a non-empty subset is closed under 

addition and scalar multiplication then it is a subspace. 

Proof: Closure under inverses follows from closure under 

scalar multiplication and the fact that −v = (−1)v. Closure 

under zero follows from the fact that 0v = 0, provided the 

subset is non-empty. ☺ 

 

But note that the empty set is (vacuously) closed under 

addition, inverses and scalar multiplication, but it is not a 

subspace. 

 

 If U and V are subspaces of W there are two other 

subspaces that can be formed from them (though in 

special cases these may coincide with U or V). The 

intersection U  V is a subspace, as is the sum, U + V, 

which is defined to be {u + v | u  U, v  V}. 
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Theorem 6: If U, V are subspaces of W (a vector space 

over F) then so are: 

                           (1)  U  V and 

                           (2)  U + V. 

Proof: 

(1) Since 0  U  V, it is non-empty. 

Let u, v  U  V and   F. 

Then u, v  U and v, for all scalars , belong to U. 

Similarly they both belong to V and so belong to U  V. 

 

(2) Since 0 = 0 + 0  U + W, it is non-empty. 

Let w1 = u1 + v1 and w2 = u2 + v2 belong to U + V, with 

u1, u2  U and v1, v2  V. 

Then w1 + w2 = (u1 + v1) + (u2 + v2) 

                       = (u1 + u2) + (v1 + v2)  U + V. 

Let   F and w = u + v where u  U and v  V. 

Then w = (u + v) = u + v  U + V. ☺ 

 

Example 13: If U, V are distinct lines through the origin 

(in 3-dimensional space) U  V is {0} and U + V is the 

plane that passes through both lines. If U, V are distinct 

planes through the origin then U  V is the line where the 

planes intersect and U + V is the 3-dimensional space. 

 

§1.5. Bases 

A linear combination of v1, v2, …, vn  V is any vector 

of the form 1v1 + 2v2 + … + nvn. 
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The span of v1, v2, …, vn is the subspace v1, v2, … , vn, 

which is the set of all linear combinations of them. The 

space spanned by the empty set is defined to be {0}. So 

the span of a finite set is the smallest subspace that 

contains it. If this is the space V we say that v1, v2, …, vn 

span V. 

 

Examples 14: 

(1)  v is the set of all scalar multiples of v; 

(2)  (1, 1, 0), (1, 0, 0) and (0, 1, 1) span ℝ3 since 

 (x, y, z) = (y − z)(1, 1, 0) + (x + z − y)(1, 0, 0) + z(0, 1, 1). 

(3) (1, 1, 0), (1, 2, 1) and (0, 1, 1) span the plane: 

{(x, y, z) | x + z = y}, 

not the whole of ℝ3. 

 

Clearly v1, v2, …, vn = v1 + v2 + … + vn. 

 

Theorem 7: If u  v1, v2, …, vn then u, v1, v2, …, vn = 

v1, v2, …, vn. 

Proof: Suppose u  v1, v2, … vn and let u = x1v1 + x2v2 

+ … + xnvn. 

Clearly v1, v2, …, vn  u, v1, v2, …, vn. 

Since u + 1v1 + 2v2 + … + nvn = (x1 + 1)v1 + (x2 

+ 2)v2 + … + (xn + n)vn the inequality holds in reverse. 
☺ 

 

The vectors v1, v2, …, vn are defined to be linearly 

independent if 
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1v1 + 2v2 + … + nvn = 0 implies that 1 = 2 = … = n 

= 0. 

If they’re not linearly independent they are said to be 

linearly dependent. 

 

Example 14: In 3-dimensional space two vectors are 

linearly dependent if they are in the same line. Three 

vectors are linearly dependent if they are in the same 

plane. 

 

Example 15: Are (1, 1, 1, 4), (1, 4, 7, 13), (3, 1, 8, 6), (4, 

2, 6, 10) linearly independent? 

Solution: Suppose 1(1, 1, 1, 4) + 2(1, 4, 7, 13) + 3(3, 

1, 8, 6) + 4(4, 2, 6, 10) = (0, 0, 0, 0) 

We solve the resulting system of equations by reducing 

the coefficient matrix to echelon form. 











 

1  1  3  4

1  4  1  2

1  7  8  6

4 13 6 10

 → 











 

1  1  3  4

0  3 −2 −2

0  6   5   2

0  9 −6 −6

 → 











 

1  1  3  4

0  3 −2 −2

0  0   9   6

0  0  0  0

  so there is 

a non-zero solution and hence the vectors are linearly 

dependent. Solving the system of equations we obtain the 

non-zero solution 

4 = 9, 3 = −6, 2 = 2, 1 = −20. 

So 2(1, 4, 7, 13) + 9(4, 2, 6, 10) = 6(3, 1, 8, 6) + 20(1, 1, 

1, 4). 

  

 A basis for a finite-dimensional vector space V is 

a linearly independent set that spans V. 
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Example 16: 

The set {(1, 0, 0, … , 0, 0), (0, 1, 0, … , 0, 0), … 

                                                   … , (0, 0, 0, …, 0, 1) 

is a basis for F
n
, where F is any field. This is called the 

standard basis. We often denote it by {e1, e2, … , en}. 

 

A minimal spanning set for V is a set of vectors that 

spans V and has smallest size of any spanning set. 

  

Theorem 8: If V has a spanning set of size m and a 

linearly independent set of size n then m  n. 

Proof: Let A be a spanning set for V and let B be a 

linearly independent subset of V. 

Suppose #A = m and #B = n. Let b  B. 

Since A spans V, b is a linear combination of the vectors 

in A. 

Now some of the vectors in A might also be in B. 

But since B is linearly independent the coefficient of 

some element v  A − B must be non-zero. Then v can be 

expressed as a linear combination of A − {v} + {b} and 

so this set spans V. In other words, we can replace v by b 

and the resulting set still spans V. Continuing in this way 

we can transfer all the vectors from B into A, displacing 

an equal number of vectors. Hence m  n. ☺ 

 

Corollary: All bases for a finite-dimensional vector 

space have the same number of elements. 

Proof: If two bases have m and n elements respectively 

then m  n and n  m. 
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 The unique number of vectors in a basis of a finite-

dimensional vector space  V  is called the dimension of  

V  and is denoted by dim(V). A set of vectors in V whose 

size exceeds dim(V) is always linearly dependent. A set 

of vectors whose size is less than dim(V) cannot span V. 

 

Examples 17: 

(1) dim F
n
 = n because the vectors (1, 0, 0, … , 0), 

(0, 1, 0, … , 0), … (0, 0, 0, … , 0, 1) form a basis (called 

the standard basis). 

 

(2) The dimension of three dimensional Euclidean space 

is 3, of course! 

 

(3) dimMn(F) = n2. The standard basis consists of the 

matrices Eij which have a 1 in the i-j position and 0’s 

elsewhere. 

 

(4) dim ℂ (as a vector space over ℝ) is 2, with {1, i} as an 

obvious basis. 

 

(5) The space Diff(ℝ) is infinite dimensional. 

 

(6) The dimension of the zero subspace is 0. 
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§1.6. Sums and Direct Sums 
Recall that the sum of two subspaces U, V is 

U + V = {u + v | u  U, v  V} 

and their intersection is 

U  V = {v | v  U and v  V}. 

 

The sum U + V is called a direct sum whenever 

U  V = 0. 

(Here we are writing the zero subspace as 0, instead of 

{0}). 

 

If W is the direct sum of U and V we write W = U  V. 

 

Example 18: In ℝ3, if U, V are two distinct planes 

through the origin then U + V = ℝ3. The sum is not direct, 

however, because U  V will be a line through the origin. 

On the other hand if U is a plane through the origin and V 

is a line through the origin that doesn’t lie in the plane, 

then U + V = ℝ3 as before, but this time U  V = 0. We 

can therefore write ℝ3 = U  V. 

 

Theorem 7: If W = U  V then every element of W can 

be expressed uniquely as u + v for u  U and v  V. 

Proof: The only part that isn’t immediately obvious is the 

directness of the sum. 

Suppose u1 + v1 = u2 + v2 with u1, u2  U and v1, v2  V. 

Then u1 − u2 = v2 − v1  U  V = 0. Hence u1 = u2 and 

v1 = v2. ☺ 
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The converse also holds. If every element of W can be 

expressed uniquely as u + v for u  U and v  V then 

W = U  V. 

 

The dimension of U  V can be expressed in terms of the 

dimensions of U, V and U + V. 

 

Theorem 8: If U, V are subspaces of W then 

dim(U + V) = dim(U) + dim(V) − dim(U  V). 

Proof: Let m = dim(U), n = dim(V) and r = dim(U  V). 

Take a basis w1, w2, … ,wr for U  V. 

Extend this to a basis w1, w2, … ,wr, u1, u2, … , um−r for 

U. 

Now extend the basis for U  V to a basis: 

w1, w2, … ,wr, v1, v2, …, vn−r for V. 

We shall show that v1, … , vr, u1, … , um−r, v1, … ,vn−r is 

a basis for U + V. 

They span V: 

Let u + v  U + V where u  U and v  V. 

Then u = 1w1 + …  +rwr + 1u1 + … + m−rum−r for 

some i’s and i’s  F 

and v = 1w1 + …  + rwr + 1v1 + … + n−rvn−r for some 

i’s and i’s  F. 

Hence u + v = [1w1 + …  +rwr + 1u1 + … + m−rum−r] 

                       + [1w1 + …  + rwr + 1v1 + … + n−rvn−r] 

                     = (1 + 1)w1 + …  + (r + r)wr + 1u1 + … 

                         … + m−rum−r + 1v1 + … + n−rvn−r. 
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They are linearly independent: 

Suppose 1w1 + …  +rwr + 1u1 + … + m−rum−r 

                                   + 1v1 + … + n−rvn−r = 0     …….. (*) 

Then 1v1 + … + n−rvn−r = −1w1 − …  − rwr 

                              − 1u1 − … − m−rum−r  U  V = 0. 

Hence 1v1 + … + n−rvn−r = 0 and 

1w1 + … + rwr + 1u1 + … + m−rum−r = 0. 

Since v1 …, vn−r are linearly independent (they are a basis 

for V) it follows that 

1 = … = n−r = = 0. 

Since w1, …, wr, u1 …, um−r are linearly independent 

(they are a basis for U) it follows that 

1 = … = r = 1, …, m−r = 0. 

Hence dim(U + V) = r + (m − r) + (n − r) 

                                = m + n − r. ☺ 

 

We can generalise a sum to a sum of any finite number of 

terms. 

The sum of U1, …, Uk is U1 + … + Uk, the set of all vectors 

of the form u1 + … + uk where ur  Ur for each r. 

 

The above sum is a direct sum if u1 + … + uk = 0, with 

each ur  Ur, implies that each ur = 0. 
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EXERCISES FOR CHAPTER 1 
 

Exercise 1: Prove that the set of all real symmetric 

matrices is a vector space over ℝ. 

 

Exercise 2: Prove that for functions of a real variable 

a(x), b(x), c(x) the solutions to the differential equation 

a(x)
d2y

dx2  + b(x)
dy

dx
  + c(x)y  = 0 

form a subspace of the space of all differentiable 

functions of x. 

 

Exercise 3: Prove that the set of bounded sequences of 

real numbers is a vector space over ℝ. 
 

Exercise 4: Show that the set S of all real sequences (an) 

where n
n

a
→

lim =  is NOT a vector space. 

 

Exercise 5: If U = {(x, y, z) | 3x − 2y + 5z = 0} 

and V = {(x, y, z) | x − y + 3z = 0} 

find U  V and U + V. 

 

Exercise 6: Show that (1, 2, 3), (4, 5, 6), (7, 8, 9) are 

linearly dependent. 

 

Exercise 7: If u = (5, −2, 3) and v = (1, 4, −2) show that 

(13, −14, 13)  u, v. 
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Exercise 8: Show that {(5, 4, 2), (1, 2, 3), (0, 2, 1)} are 

linearly independent. 

 

Exercise 9: Is {(1, 5, 7), (2, −1, 3), (6, 2, 8), (0, 5, 1)} 

linearly dependent or independent. 

 

Exercise 10: Find the dimension of the space of all 3  3 

symmetric matrices. 

 

Exercise 11: Suppose U, V are subspaces of ℝ7 with 

dimensions 4 and 5 respectively. 

Suppose too that U + V = ℝ7. 

Find dim(U  V). 

 

SOLUTIONS FOR CHAPTER 1 
 

Exercise 1: Closure under +: Suppose A, B are real 

symmetric matrices. Then AT = A and BT = B. 

Hence (A + B)T = AT + BT = A + B, so A + B is symmetric. 

Closure under scalar :  For any scalar k, (kA)T = kAT 

= kA so the set is closed under scalar multiplication. 

Hence the set is a subspace. 

 

Exercise 2:  Closure under +: Suppose f(x), g(x) are 

solutions to the differential equation. 

Then a(x)
d2f(x)

dx2   + b(x)
df(x)

dx
  + c(x)f(x)  = 0 and 

a(x)
d2g(x)

dx2   + b(x)
dg(x)

dx
  + c(x)g(x)  = 0. 
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Hence: 

a(x)
d2(f(x) + g(x))

dx2   + b(x)
d(f(x) + g(x))

dx
  + c(x)(f(x) + g(x)) 

= a(x)






d2f(x)

dx2  + 
d2g(x)

dx2   + b(x)






df(x)

dx
 + 

dg(x)

dx
  

                                                           + c(x)f(x)  + c(x)g(x) 

= a(x)
d2f(x)

dx2   + b(x)
df(x)

dx
  + c(x)f(x) 

                                   + a(x)
d2g(x)

dx2   + b(x)
dg(x)

dx
  + c(x)g(x) 

= 0. 

 

Closure under scalar multiplication: For any real 

number k 

a(x)
d2(kf(x))

dx2   + b(x)
d(kf(x))

dx
  + c(x)kf(x) 

               = ka(x)






d2f(x)

dx
 + b(x)

df(x)

dx
 + c(x)f(x)   

               = 0 

 

Exercise 3: 

Closure under +: 

Suppose (an) and (bn) are bounded sequences. 

Then, there exist K, L such that for all n 

|an|  K and |bn|  L. 

Now |an + bn|  |an| + |bn|  K + L for all n. 

Hence the sequence (an) + (bn) = (an + bn) is bounded. 
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Closure under scalar multiplication: For any real 

number k, |kan| = |k|.|an|  |k|.K. 

Therefore k(an) = (kan) is bounded. 

Hence the set is a subspace. 

 

Exercise 4: It isn’t closed under addition. 

If an = n and bn = − n then both (an) and (bn) belong to S. 

But (an) + (bn) does not. 

 

Exercise 5: 

U  V = {(x, y, z) | 3x − 2y + 5z = 0 and x − y + 3z = 0}. 

We solve the homogeneous system 








−

−

5

3

2

1

3

1
. 










−

−

5

3

2

1

3

1
 → 









−

−

4

3

1

1

0

1
. 

Let z = k. Then y = 4k and x = k. 

So U  V = {k(1, 4, 1) | k  ℝ}. 

Now dim(U + V) = dim(U) + dim(V) − dim(U  V) 

                             = 2 + 2 − 1 = 3 so U + V = ℝ3. 

 

Exercise 6: (1, 2, 3) + (7, 8, 9) = 2(4, 5, 6). 

 

Exercise 7: 

Suppose (13, −14, 13) = k(5, −2, 3) + h(1, 4, −2). 

We attempt to solve the system 


 5k + h = 13

−2k + 4h = − 14

3k − 2h = 13
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















−

−

−

13

14

13

2

4

1

3

2

5

 → 
















−

−

−

−

13

14

15

2

4

9

3

2

1

 → 
















−

−

− 58

44

15

29

22

9

0

0

1

 

                                                         → 
















−

−

0

2

15

0

1

9

0

0

1

. 

So h = −2, k = −15 − 9(−2) = 3. 

So (13, −14, 13) = 3(5, −2, 3) − 2(1, 4, −2)  u, v. 

 

Exercise 8: 

Suppose a(5, 4, 2) + b(1, 2, 3) + c(0, 2, 1) = (0, 0, 0). 

 

We solve the homogeneous system   



 5a + b = 0

4a + 2b + 2c = 0

2a + 3b + c = 0
 . 

 

















132

224

015

 → 














 −−

132

224

211

→ 














 −−

550

1060

211

 

                    → 














 −−

1060

110

211

 → 














 −−

400

110

211

. 

 a = b = c = 0 and so the vectors are linearly 

independent. 
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Alternatively we can evaluate the determinant 

132

224

015

 = 5(2 − 6) − (4 − 4) = −20. 

Since this is non-zero the vectors are linearly 

independent. 

 

WARNING: This second method only works for n 

vectors in an n-dimensional vector space. 

 

Exercise 9: Linearly dependent. Whenever you have 

more vectors than the dimension of the vector space from 

which they come, they must be linearly dependent. 

 

Exercise 10: 

A 3  3 symmetric matrix has the form 
















cfe

fbd

eda

 . 

Clearly 

















000

000

001

,   
















000

010

000

  , 
















100

000

000

  , 
















000

001

010

, 

















001

000

100

,   
















010

100

000

 is a basis so the dimension is 6. 
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Exercise 11: 

dim(U  V) = dim(U) + dim(V) − dim(U + V) 

= 4 + 5 − 7 = 2. 
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