1. FINITE-DIMENSIONAL
VECTOR SPACES

§1.1. Axioms

This may be your first encounter with an axiomatic
system. So, here’s some general discussion about what it
means to define a mathematical structure by axioms.

The father of axioms was Euclid. He developed
Euclidean Geometry by starting with some axioms. For
him, axioms were self-evident truths, such as:

e Every two distinct points lie on exactly one line.

and
e Given a line, and a point that does not lie on that line,
there is exactly one line through the given point
parallel to the given line.

\.\
/\

Now Euclid was attempting to make a
mathematical model of a plane in our real universe and in
fact, these axioms are far from self-evident.

Well, they seem reasonable enough for lines drawn
on a sheet of paper, or in the sand. But what if there are
many lines through the same pair of points? What if there
Is a line through a given point almost parallel but not one
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exactly parallel. If ‘paralle]” means never intersect, how
can we tell that the line we draw satisfying the
assumptions in the second scenario, might not meet the
first line if both lines were extended a billion miles.

In fact, in the nineteenth century, some geometers
played with the second of these axioms and constructed a
couple of non-Euclidean geometries, Elliptic Geometry
and Hyperbolic Geometry. Although Euclidean
Geometry, in its 3-dimensional version, is a quite accurate
model for our spatial world, some cosmologists believe
that one or other of these non-Euclidean geometries is
more accurate for the whole cosmos.

Axioms, in the sense that we are using the term
here, arose towards the end of the eighteenth century.
Early in that century, the French mathematician Galois
invented the concept of a group, and developed a
considerable amount of the theory of groups.

Now Galois was concerned with polynomials, and
their zeros (values of x that make the polynomial P(x)
equal to zero). For him the group consisted of
rearrangements of the zeros of the polynomial.

Then somebody realised that the things being
permuted didn’t have to have anything to do with
polynomials, and so the groups were groups of
‘substitutions’ or, as we would say, rearrangements of any
collection of numbers.
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A considerable amount of the theory of
Permutation Groups was developed. But somebody once
noticed that everything could be proved from just four
axioms. Group Theory was the first branch of
mathematics to become abstract.

The modern concept of a group is that it consists of
a set of ‘things’. They could be numbers, or polynomials,
or matrices, or permutations, or even the four different
ways of rotating a mattress.

There is assumed to be an undefined operation,
called ‘multiplication’ that combines any two of these
things to produce one of them.

For any group we need to know what the elements
are and how x * y is defined. If the elements of the group
are numbers we might define x = y to be ordinary
multiplication. Or it could be ordinary addition. There is
a group of real numbers where x * y is defined by:

X*y=X+Yy+Xy.

If the elements of the group are permutations we
may define the product to be the result of performing one
permutation followed by another (or even, for x * x, the
operation of performing x twice.

If there is any danger of confusing x * y with
ordinary multiplication we need to continue using this
rather cumbersome notation. But otherwise, we write it as
Xy.

Now, as | said, for a specific example of a group
we need a definition of the set of things, as well as a
definition of multiplication. But if we are developing the
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theory we can consider the set to consist of undefined
‘things’ and the multiplication to be undefined. However
we need to make certain assumptions in order to prove
theorems. These we call the group axioms. Far from being
‘self-evident truths’ they are part of the definition of a

group.

A group is a set G, containing a specific element,
denoted by 1, a function x — x* from G to G, and a binary
operation xy, such that the following 4 axioms hold:

THE GROUP AXIOMS

(1) (Closure under multiplication): xy € G.

(2) (Associativity under multiplication): x(yz) = (xy)z.
(3) (Identity under multiplication): 1x = x = x1.

(4) (Inverses under multiplication): xx* =1 = x"x.

The whole of Group Theory can be developed
using only these 4 axioms. Any theorem we prove will
hold for any group, no matter what the elements are or
what the operation is — provided these axioms hold.

NOTES:

(1) Axiom (1) is really redundant, because the fact that

X *y e G is part of the definition of a binary operation.
However it is included for emphasis.

(2) The Associative Law is important because, without it,
the expression xyz would be ambiguous. Moreover
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powers of x, where x" denotes x * x * ... * x, with n
factors, would be ambiguous and would depend on the
order in which the operations are carried out.
Is x* = ((X * X) * X)* X or (X * (X * X)) * X or

X # (X * X) * X) or X * (X * (X * X))?
Without the associative law these might all be different.

(3) If G is a group of numbers, don’t assume that 1
represents the number 1. In some groups it might be 0 —
in others it could be — 1. If there is danger of confusion
we write the identity as e. And by ‘e’ I don’t mean the
special exponential number.

: 1 .
(4) We never write x! as ;because fractions can be

y
X

commutative law these could be different.

ambiguous. Does 2 mean xly, or yx1? Without the

There’s a 5" axiom that can be added, which gives
rise to the definition of a commutative group.

(5) (Commutativity under multiplication): xy = yx.

A commutative group is one that satisfies all 5
axioms. Commutative groups are more usually called
abelian groups, after the Norwegian mathematician Abel.
The theory of abelian groups is a subset of Group Theory
as a whole.
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If you want to explore the rich world of Group
Theory you can find an account in my notes on Group
Theory.

The axiomatic approach proved so successful that
it has crept into most branches of mathematics. In abstract
algebra we have groups, semigroups, rings, fields, vector
spaces. Topology begins with the axioms for a topological
space. Set Theory starts with the ZF axioms. Different
geometries usually begin with a set of axioms. Calculus
has gone abstract at advanced levels. There we call the
study Analysis, and we might begin a course in Analysis
with the axioms for a Hilbert Space.

81.2. Fields

By now you’ll have acquired a fair knowledge of
matrices. These are a concrete embodiment of something
rather more abstract. Sometimes it’s easier to use
matrices, but at other times the abstract approach allows
us more freedom.

A field F, is a set, together with two operations,
addition (written x + y) and multiplication (wrltten Xy)
such that the following \ o
properties (called the
field axioms) hold. In
addition there are two
special elements of F, 0
and 1, which are not
equal. Also, forall x e F
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there are elements —x and, unless x = 0, x 1. All of these
properties are required to hold for all x,y, z € F.

FIELD AXIOMS
(1) (Closure under addition): x +y € F.
(2) (Associativity under addition):
xt(y+z)=(x+y)+z

(3) (Commutativity under addition): x +y =y + X.
(4) (Identity under addition): x+0=x=0 +x
(5) (Inverses under addition): x + (—x) =0 = (=x) + X.
(6) (Closure under multiplication): xy € F.
(7) (Associativity under multiplication): x(yz) = (xy)z.
(8) (Commutativity under multiplication): xy = yx.
(9) (Identity under multiplication): 1x = x = x1.
(10) (Inverses under multiplication): xx?* =1 = xx.
(11) (Distributivity):

X(y +z)=xy+xzand (X +y)z = xz +yz.

NOTES:
(1) We insist that 0 and 1 are distinct. So the smallest
possible field has 2 elements.

(2) The existence of a multiplicative inverse only extends
to non-zero elements. If you allowed 0! you would be
able to prove that all elements were equal, which doesn’t
give any useful examples.

(3) Several axioms have two equalities, one of which is
redundant because of one of the commutative laws. For
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example we say xx* =1, as well as 1 = xx. The reason
for this is so that we can consider the axioms
independently. There are algebraic systems where the
commutative law for multiplication doesn’t hold, yet both
halves of the inverse law for multiplication do.

(4) Axioms (6) — (10) mimic axioms (1) — (5), though
there is a subtle difference between axioms (5) and (10)
in so far as axiom (10) only holds for non-zero x.

(5) Axioms (1) — (5) are the axioms for a commutative
group. So are axioms (6) — (10), but with different
notation. Together they say that a field is a commutative
group under addition and the non-zero elements are a
commutative group under multiplication.

But it is the distributive law that binds the two
structures together it. Without it we would have two
completely separate structures that happen to live in the
same body, like Dr Jekyll and Mr Hyde.

(6) There are other laws that we insist on for all fields, but
they are not listed as axioms because they are
consequences of these 11 axioms. Such a law is the one
that says that Ox = 0 = xO0.

Example 1: The following are examples of fields:
Q, the set of rational numbers.
R, the set of real numbers.
C, the set of complex numbers.
Q[V2]={a+bV2|a,b e Q}.
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The associative, commutative and distributive laws hold
throughout the system of complex numbers, so the only
axioms that need to be checked are the closure, identity
and inverse laws. For Q, R and C these are obvious. Let
us check them for Q[V2].

(@a+bv2) + (c+dV2) =(a+c)+ (b+d)n2 so Q2] is
closed under addition.
(a + bV2)(c + dV2) = (ac + 2bd) + (ad + bc)V2, so Q[V2]
is closed under addition.
Q[2] clearly contain both 0 and 1 so the identity laws
hold.
—(a + bv2) = (-a) + (-b)V2 and
1 a-b2 a (—b ]\/
atbV2 al— 20 a— 20 T\a2— 2p7)
so Q[V2] is closed under both additive and multiplicative
inverses.

There are certain properties of field that are
consequences of these field axioms. For example there’s
no axiom that says that Ox = 0. However if we consider
that Ox = (0 + 0)x = Ox + Ox we reach this conclusion (with
the help of the additive identity axiom and the distributive
law).

The cancellation law that we constantly use in basic
algebra is not one of the 11 axioms but is a consequence
of them. Ifab=0thena=0o0rb=0. Forifa=0thena™
exists and if ab =0 then 0 =a*(ab) = (ata)b = 1b =h.
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Theorem 1: If pis prime then Z, = {0, 1,2, ... ,p— 1} is
a field under addition and multiplication modulo p (where
we add and multiply normally but then take the remainder
on dividing by p).

Proof: All the field axioms are obvious except for
inverses under multiplication.

Suppose X is a non-zero element of Z,. Regarding x as an
integer this means that x is not divisible by p. In other
words, X 1Is coprime to p. This means that ax + bp =1 for
some integers a, b. Now, interpreting this modulo p this

becomes ax = 1, so x has an inverse under multiplication.
YO

Example 2: In Zj3 the following table gives the inverses
under addition and multiplication for the non-zero
elements.

X |1 |2 |3 |4 |5 |6 |7 |8 [9]10|11]12
—x (1211109 (8 |7 |6 |5 |[4]3 |2 |1

x*t|1 |7 |9 |10|8 |11|2 |5 |3|4 |6 |12

Integers that are 1 plus a multiple of 13 include

14, 27, 40, 53, 66, 79 and 92.

So, for example, 10 x 4 =40 =1 mod 17 and so 10 and 4
are inverses of one another under multiplication.

Then, since7=-6,7'=-61=-11=2.

If p is not prime, however, Z, is not a field because,
if p = ab for some integers a, b where 1 < a, b < p, then
modulo p we would have ab =0 whilea=0andb #0.
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So the only systems of integers modulo p that give
fields are those where p is prime. But these are not the
only finite fields. For every prime power p" there exists a
field with p" elements (and for no other sizes). Tthe field
of order p” (there is only one) is not Zpn, unless n = 1.

Example 3: The following are the addition and
multiplication tables for the field with 4 elements:
+ 0123 xO0123

0/0({1{2|3] 0(0j0|0]O
1/1]0]3|2| 1[0]1]2|3
21213|0]1] 2]|0]2(3]|1
3/3]2[1]|0] 3[0|3]1]2?

Now let us look at a few properties that we insist on for
fields, but which are consequences of the 11 axioms and
therefore don’t have to be included among the axioms.

Theorem 2: Ifx+y=x+ztheny =2z,
Proof: Suppose that x +y =x + z.
SoX+t(X+Y)=—Xx+(X+2)

S (—x+x)+y=(—x+Xx)+zby Axiom (2)
.. 0+y=0+zbyaxiom (5)

.y =z by axiom (4)

Theorem 3: Ox = 0 = x0 for all x in a field.
Proof: Ox + 0 = 0x = (0 + 0)x, by Axiom (4)

= 0x + Ox by Axiom (11)
. 0=0x by Theorem 2. Similarly x0 = 0.
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One of the deep mysteries, when you first learnt
algebra, was probably why (—x)(-y) = xy. | remember my
teacher fobbing me off with the explanation that “two
negatives make a positive — after all, if you’re not unkind,
you’re kind.”

This seemed to satisfy me then. I didn’t reply, “well
if two negatives make a positive why isn’t —1 plus —1
equal to plus 277

But any explanation along the lines of double
negatives is totally invalid. | suppose | was grateful that
my teacher didn’t try to explain it properly. Here’s a
proper proof.

Theorem 4: (—x)(-y) = xy for all x, y in a field.
Proof: [xy + x(=y)] + (-=X)(=y) = xy + [x(=y) + (=})(-Y)]
by Axiom (2)
S X (DT ()Y =xy + X+ (X)1-Y)
by Axiom (11)
- X0+ (=X)(=y) = xy + 0(-y) by Axiom (5)
o 0+ (=X)(-=y) = xy + 0 by Theorem (3)
2 (=X)(=y) = xy by Axiom (4)

§1.3. Vector Spaces

A vector space over a field F is a set V, together
with a specific element 0 € V, and a function v — —v
from V to V, such that the following 10 axioms hold.
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VECTOR SPACE AXIOMS
(1) (Closure under addition): u+v € F.
(2) (Associativity under addition):

X+ (V+w)=(Uu+v)+w.
(3) (Commutativity under addition): u +v =v + u.
(4) (Identity under addition): v+0=v=0+vV
(5) (Inverses under addition): v + (=v) =0 = (-v) + v.
(6) (Closure under scalar multiplication): Av € V.
(7) (Associativity under scalar multiplication):

Muv) = (Apv.
(8) (Identity under scalar multiplication): 1v =v.
(9) (Inverses under multiplication): xx* =1 = x7x.
(10) (Distributivity):
AMu+v)=2Au+Aivand (A +pu)v=A2Av + pv.

NOTES:

(1) You may wonder why we haven’t printed the vectors
u, v, w in bold type. That is done when you first learn
about vectors so that you can see clearly which are vectors
and which are scalars. So we wrote Av to emphasise that
A isascalar and v is a vector. However there’s nothing in
the set of axioms for a vector space that says that vectors
and scalars are different things. There are examples where
the field F is a subset of the vector space V and so the
elements of F are both vectors and scalars.

(2) There is some similarity between the vector space
axioms and the field axioms. In fact the first 5 axioms are
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the same in both cases. Both fields and vector spaces are
abelian groups under addition.

When it comes to multiplication we only define the
product of a scalar (element of F) with a vector (element
of V). Moreover we always write the scalar before the
vector, so there is no commutative law for scalar
multiplication.

Example 4: C is a vector space over R. Here the real
numbers are scalars, and the complex numbers are the
vectors. But the real number are also scalars.

This situation occurs whenever you have a subfield
of a larger field. If you go through the 10 axioms, in the
situation where F is a subfield of V, you will find that the
10 vector space axioms are direct consequences of the
field axioms.

In the area of mathematics that studies fields
(Galois Theory) the theory of vector spaces plays an
important role.

Example 5: For any field F, F" is the set of all n-tuples
(X1, X2, ..., Xn) Where each x; € F and where addition and
scalar multiplication are defined in the usual way. It’s
easily seen to be a vector space over F.

Example 6: Consider 3-dimensional Euclidean space.

This is a vector space over R as follows. The vectors are
the directed line segments from the origin to a point. The
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scalars are the real numbers. Addition is defined by
completing a parallelogram.

u+v

@)

Multiplying a non-zero vector v by a positive scalar A
produces a vector with the same direction as v but with A
times the length. Multiplying by a negative scalar
magnifies the length and reverses the direction. And, of
course Ov = 0 = A0 for all vectors v and scalars A.

Clearly this is essentially the same as R3. We will
make the concept of ‘essentially the same’ precise in a
later chapter.

Example 7: For any field F, F* is the set of all infinite
sequences (X1, X2, ...) with each x; € F and with addition
and multiplication defined in the obvious way.

Example 8: For any field F, F[x] is the set of all
polynomials anx" + an1x" + ... + aix + ap where each x;
e F and n is any non-negative integer. Addition and scalar
multiplication are defined in the obvious way. F[X] is
clearly a vector space over F. Note that we could write the
polynomial as an infinite sequence (a, a1, ...), but F[x]
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differs from F* in that here all the components from some
point on are zero.

Example 9: For any field F, Mn(F) is the set of all n x n
matrices with the usual addition and scalar multiplication.
This is clearly a vector space over F.

Example 10: Let V = o{1, 2, 3}, that is the set of all
subsets of {1, 2, 3,4, 5,6, 7, 8,9, 10} and let the field of
scalars be F = Z, = {0, 1} with addition and multiplication
mod 2.

DefineS+T=SuT-SNT.
Then{1,3,7}+{3,5,7,8}={1,3,5,7,8} - {3, 7}

={1,5, 8}.

For all subsets S, define 0S = & = { }, the empty
setand 1S=S.

This strange vector space has 21° = 1024 elements.
The zero vector is @ and S + S = & for all subsets S.

Up to this point the vector spaces have had
recognisable components. In the next example this is not
the case.

Example 11: Diff(R) is the set of all differentiable
functions from the reals to the reals. The sum of two
differentiable functions f(x) and g(x) is the differentiable
function f(x) + g(x) and the scalar multiple of the
differentiable function f(x) by the scalar A is the
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differentiable function Af(x). Thus the closure laws hold.
The remaining axioms are just as obvious.

The function f(x) = x? belongs to Diff(R). But what are its
components?

Spaces of functions are very important in the
deeper study of analysis.

§1.4. Subspaces

A subspace of a vector space is a non-empty subset
that is closed under addition and scalar multiplication.
The fact that —v = (-1)v guarantees that a subspace is also
closed under inverses. Note too that if V is any vector
space {0} is a subspace of V, as is V itself.

If U is a subspace of V we write U < V. Every
vector space is a subspace of itself, but if we want to
emphasise that U is not the same as V we can write U <
V and say that U is a proper subspace of V.

Examples 12:

(1) {(x,y,2) € R®¥| z=x+y}is a subspace of R3.

(2) {(x,y,z) € R*|3x+2y+5z=0and 7x -y + 2z = 0}
is a subspace of R®.

(3) A plane that passes through the origin is a subspace of
3-dimensional space.

(4) The set of differentiable functions from R to R is a
subspace of the set of continuous functions from R to R,
which in turn is a subspace of the set of all functions from
R to R.
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(5) The set of convergent sequences is a subspace of R”,
(6) The set of diagonal n x n matrices is a subspace of the
space of all n x n matrices.

(M Q<R<C.

(8) In Example 3, Z, is a subspace of the field with 4
elements.

(9) For any vector space V {0} < V.

There are 10 axioms for a vector space, but axioms
3), (4), (7), (8), (9) and (10) will automatically be
inherited by any subset. If the subset is non-empty we can
dispense with (5) and (6) as well.

Theorem 5: If a non-empty subset is closed under
addition and scalar multiplication then it is a subspace.
Proof: Closure under inverses follows from closure under
scalar multiplication and the fact that —v = (-1)v. Closure
under zero follows from the fact that Ov = 0, provided the
subset is non-empty. %©

But note that the empty set is (vacuously) closed under
addition, inverses and scalar multiplication, but it is not a
subspace.

If U and V are subspaces of W there are two other
subspaces that can be formed from them (though in
special cases these may coincide with U or V). The
intersection U N V is a subspace, as is the sum, U + V,
which is definedtobe {u+v|u e U,v e V}
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Theorem 6: If U, V are subspaces of W (a vector space
over F) then so are:

1) UnVand

(2) U+V.
Proof:
(1) Since 0 € U NV, it is non-empty.
Letu,veUnVandi eF.
Then u, v € U and Av, for all scalars A, belong to U.
Similarly they both belong to V and so belongto U n V.

(2) Since0=0+0 € U + W, itis non-empty.
Let wy = u; + vy and w, = Uy + v, belong to U + V, with
Uy, U, e U and Vi, Vo € V.
Thenw; + w, = (U1 + Vl) + (U2 + V2)

=(uptup) +(vi+vy) e U+V.
LetA e Fandw=u+vwhereue Uandv € V.
Theniw=2Au+Vv)=Au+ive U+V. %O

Example 13: If U, V are distinct lines through the origin
(in 3-dimensional space) U NV is {0} and U + V is the
plane that passes through both lines. If U, V are distinct
planes through the origin then U n V is the line where the
planes intersect and U + V is the 3-dimensional space.

81.5. Bases

A linear combination of v, vo, ..., vn € V is any vector
of the form Ajvy + Aova + ... + Anvn.
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The span of vy, va, ..., vy is the subspace (v, Vo, ... , Vn),
which is the set of all linear combinations of them. The
space spanned by the empty set is defined to be {0}. So
the span of a finite set is the smallest subspace that
contains it. If this is the space V we say that vy, v, ..., V,
span V.

Examples 14:

(1) (v) isthe set of all scalar multiples of v;

(2) (1,1,0),(1,0,0)and (0, 1, 1) span R since
x,v,2)=(y-2(1,1,0+(x+z-y)(1,0,0)+2z(0,1,1).
(3)(1,1,0),(1,2,1)and (0, 1, 1) span the plane:

{x,y,2) | x+z=y},
not the whole of R®.

Clearly (v1, Vo, ..., Vo) = (V1) + (Vo) + ... +{Vp).

Theorem 7: Ifu € (v1, Vo, ..., V) then{u, v, Vo, ..., Vp) =
(V1, V2, ..., V).

Proof: Suppose u € {(Vi, Vo, ... vpy and let u = X3vi + XV
+ ... T XpVq.

Clearly (v1, Vo, ..., Vo) <{U, V1, V2, ..., Vp).

Since AU + vy + AV + ...+ AV = (AXg + Ag)Vi + (AX2
+ M)V2 + ...+ (AXy + An)V, the inequality holds in reverse.
%O

The vectors vi, Vo, ..., v, are defined to be linearly
independent if
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MV1i+ AoV + ..+ AWV, =0 implies that L1 =2 =... =\,
=0.

If they’re not linearly independent they are said to be
linearly dependent.

Example 14: In 3-dimensional space two vectors are
linearly dependent if they are in the same line. Three
vectors are linearly dependent if they are in the same
plane.

Example 15: Are (1,1, 1, 4), (1,4, 7,13), (3, 1, 8, 6), (4,
2, 6, 10) linearly independent?
Solution: Suppose A1(1, 1, 1, 4) + X»(1, 4, 7, 13) + A3(3,
1,8, 6) +A4(4, 2,6,10)=(0,0,0,0)
We solve the resulting system of equations by reducing
the coefficient matrix to echelon form.
1134 113 4 113 4
1412 03-2-2 03-2-2 :
1786|065 2|00 g9 6|SOtherels
413610 09-6-6 0000
a non-zero solution and hence the vectors are linearly
dependent. Solving the system of equations we obtain the
non-zero solution
Aa=9, A3 =—-6, Ap =2, Ay = -20.
So2(1,4,7,13) +9(4, 2, 6,10) =6(3, 1, 8, 6) + 20(1, 1,
1, 4).

A basis for a finite-dimensional vector space V is
a linearly independent set that spans V.
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Example 16:

The set {(1,0,0,...,0,0),(0,1,0,...,0,0), ...
...,(0,0,0,...,0, 1)

is a basis for F", where F is any field. This is called the

standard basis. We often denote it by {e1, e,, ..., en}.

A minimal spanning set for V is a set of vectors that
spans V and has smallest size of any spanning set.

Theorem 8: If V has a spanning set of size m and a
linearly independent set of size n then m > n.

Proof: Let A be a spanning set for V and let B be a
linearly independent subset of V.

Suppose #A =mand#B =n. Letb € B.

Since A spans V, b is a linear combination of the vectors
in A.

Now some of the vectors in A might also be in B.

But since B is linearly independent the coefficient of
some element v € A — B must be non-zero. Then v can be
expressed as a linear combination of A — {v} + {b} and
so this set spans V. In other words, we can replace v by b
and the resulting set still spans V. Continuing in this way
we can transfer all the vectors from B into A, displacing
an equal number of vectors. Hence m > n. %©

Corollary: All bases for a finite-dimensional vector
space have the same number of elements.

Proof: If two bases have m and n elements respectively
thenm<nandn<m.
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The unique number of vectors in a basis of a finite-
dimensional vector space V is called the dimension of
V and is denoted by dim(V). A set of vectors in VV whose
size exceeds dim(V) is always linearly dependent. A set
of vectors whose size is less than dim(V) cannot span V.

Examples 17:

(1) dim F" = n because the vectors (1,0,0,...,0),
0,1,0,...,0),...(0,0,0,...,0, 1) form a basis (called
the standard basis).

(2) The dimension of three dimensional Euclidean space
is 3, of course!

(3) dimMn(F) = n? The standard basis consists of the

matrices Ejj which have a 1 in the i-j position and 0’s
elsewhere.

(4) dim C (as a vector space over R) is 2, with {1, i} as an
obvious basis.

(5) The space Diff(R) is infinite dimensional.

(6) The dimension of the zero subspace is 0.
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81.6. Sums and Direct Sums
Recall that the sum of two subspaces U, V is
U+V={u+vjueUveV}

and their intersection is
UnV={v|veUandv e V}

The sum U + V is called a direct sum whenever
UnV=0.
(Here we are writing the zero subspace as 0, instead of

{0}).
If W is the direct sum of U and V we write W=U ® V.

Example 18: In R3, if U, V are two distinct planes
through the origin then U + V = R3. The sum is not direct,
however, because U n V will be a line through the origin.
On the other hand if U is a plane through the origin and V
is a line through the origin that doesn’t lie in the plane,
then U + V = R3 as before, but this time U NV = 0. We
can therefore write R =U @ V.

Theorem 7: If W = U @ V then every element of W can
be expressed uniquelyasu +vforue Uandv € V.
Proof: The only part that isn’t immediately obvious is the
directness of the sum.

Suppose U3 + vi = Uy + Vo with ug, U, € Uand vy, v, € V.
Thenu; —u;=v,—v; € UN 'V =0. Hence u; = u; and
V1 = Vo S
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The converse also holds. If every element of W can be
expressed uniquely asu + v foru e Uand v € V then
wW=UeYV.

The dimension of U n V can be expressed in terms of the
dimensions of U, Vand U + V.

Theorem 8: If U, V are subspaces of W then

dim(U +V) =dim(U) + dim(V) —dim(U N V).

Proof: Let m = dim(U), n =dim(V) and r = dim(U N V).
Take a basis wy, Wy, ... ,wy forU nV.

Extend this to a basis wy, Wy, ... Wy, U, Ua, ..., Un—r fOr
U.
Now extend the basis for U n V to a basis:

W1, Wa, ... ,Wr, V1, Vo, ..., Vp—r TOr V.
We shall show that vy, ..., vr, U1, ..., Um—r, V1, ... Vn—r IS
a basis for U + V.
They span V:
Letu+veU+Vwhereue Uandv e V.
Then u = ouwy + ... +aWr + BiUs + ... + Bm—rUm-r for
some aj’s and Bi’s € F
and v=yiw; + ... +7yWr+ 81V1 + ... + Sn—rVn-r fOr some
vi’s and &i’s € F.
Henceu +v = [ouws + ... +ouWr + BiUs + ... + Brn-rUm]
+ [’Y1W1 +... tywr + o1V + ...+ Sn—rVn—r]
= ((11+'Y1)W1+ T (Otr'l‘ yr)Wr + Blu1+
. Bm—rum—r + O1V1 + ... + On—rVn-r.
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They are linearly independent:
Suppose oW + ... oWy + Blul + ...+ Bm—rUm—r

+ 61V1 + ...+ Sn—rVn—r =0 ........ (*)
Then 81V1 + e + Sn—rVn—r = —OL1W1 T oeee T OLrWr
- Blul — ... = Bm—rUm—r eUnNV=0.

Hence d;vi + ... + OpVn—r = 0 and
oW1 + ...+ oWy + Blul + ...+ Bm—rum—r =0.
Since vs ..., vp—r are linearly independent (they are a basis
for V) it follows that
61: :Sn—r: =0.
Since Wy, ..., Wy, Uz ..., Um—r are linearly independent
(they are a basis for U) it follows that
1= ... =0 = Bl, cees Bm—r =0.

Hencedim(U +V)=r+(m-r)+(n-r)

=m+n-r. %O

We can generalise a sum to a sum of any finite number of
terms.

Thesumof Uy, ..., Uxis U1 + ... + Uy, the set of all vectors
of the form u, + ... +ux where ur € U, for each r.

The above sum is a direct sum if u; + ... +ux = 0, with
each ur € Uy, implies that each ur = 0.
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EXERCISES FOR CHAPTER 1

Exercise 1: Prove that the set of all real symmetric
matrices is a vector space over R.

Exercise 2: Prove that for functions of a real variable
a(x), b(x), c(x) the solutions to the differential equation
d? d
a()g s *+ b, +c()y =0
form a subspace of the space of all differentiable
functions of x.

Exercise 3: Prove that the set of bounded sequences of
real numbers is a vector space over R.

Exercise 4: Show that the set S of all real sequences (an)
where !m a,=+o0 is NOT a vector space.

Exercise 5: If U ={(x,y, z) | 3x— 2y + 5z = 0}
andV={(x,y,2) | x-y+3z=0}
findUnVand U+ V.

Exercise 6: Show that (1, 2, 3), (4, 5, 6), (7, 8, 9) are
linearly dependent.

Exercise 7: If u = (5, -2, 3) and v = (1, 4, —2) show that
(13, -14, 13) € (u, v).
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Exercise 8: Show that {(5, 4, 2), (1, 2, 3), (0, 2, 1)} are
linearly independent.

Exercise 9: Is {(1, 5, 7), (2, -1, 3), (6, 2, 8), (0, 5, 1)}
linearly dependent or independent.

Exercise 10: Find the dimension of the space of all 3 x 3
symmetric matrices.

Exercise 11: Suppose U, V are subspaces of R’ with
dimensions 4 and 5 respectively.

Suppose too that U + V = R,

Find dim(U N V).

SOLUTIONS FOR CHAPTER 1

Exercise 1: Closure under +: Suppose A, B are real
symmetric matrices. Then AT = A and BT = B.

Hence (A+B)"=AT+B"=A+B, so A + B is symmetric.
Closure under scalar x: For any scalar k, (kA)"T = kAT
= kA so the set is closed under scalar multiplication.
Hence the set is a subspace.

Exercise 2: Closure under +: Suppose f(x), g(x) are
solutions to the differential equation.

Then a0 + bx )Jl + ()T =0and

dx?
d2
a0 g + b0 g + g0 =0.
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Hence:
a(X)d (f(><()]I ;2 9(x) . b(x)d(f(x)d; 9(x) . cX)(FX) + g(¥)

= a(x)(d;f)g) + d;gx(zx )) + b(x)(%:(—(2 + %&j
+c()f(x) +c(x)g(x)

= a(x)% + b(x)% + c(X)f(x)

d? d
+ a0 % 159 4 cpag0

=0.

Closure under scalar multiplication: For any real
number k

a(x)% + b(x)w + c(X)kf(x)

= ka(x)(% + b(x)% + c(x)f(x)j

=0

Exercise 3:
Closure under +:

Suppose (an) and (bn) are bounded sequences.
Then, there exist K, L such that for all n

lan| < K and |bn| < L.
Now |an + bn| < |an| + |bn| < K + L for all n.
Hence the sequence (an) + (bn) = (an + bp) is bounded.
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Closure under scalar multiplication: For any real
number K, [kan| = [K|.|an| < |K|.K.

Therefore k(an) = (kan) is bounded.

Hence the set is a subspace.

Exercise 4: It isn’t closed under addition.
If an = n and by = — n then both (an) and (bn) belong to S.

But (an) + (bn) does not.

Exercise 5:
UNnV={(XY,2)|3x—-2y+5z=0and x -y + 3z = 0}.

We solve the homogeneous system (1 1 3].

3-25

(1 -1 3] (l -1 3}

> .
3-25 01 -4
Letz=k. Theny =4k and x = k.
SoUnV={k(,4,1)|k e R}.
Now dim(U + V) =dim(U) + dim(V) — dim(U N V)

=2+2-1=3s0U+V=R:

Exercise 6: (1, 2,3) +(7,8,9) =2(4, 5, 6).

Exercise 7:

Suppose (13, -14, 13) =k(5, -2, 3) + h(1, 4, -2).
5k +h=13

We attempt to solve the system {—ZK +4h=-14
3k —2h =13
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5 1|13 1 9 |-15 1 9 |-15
—2 4 |-14| | -2 4 |-14| 5|0 22 |-44

3 2|13 3 -2 13 0 —29| 58
19|-15

Llo1]-2

00| 0

Soh=-2,k=-15-9(-2) = 3.
So (13, -14, 13) = 3(5, -2, 3) — 2(1, 4, -2) < (u, V).

Exercise 8:
Suppose a(b, 4, 2) + b(1, 2, 3) + ¢(0, 2, 1) = (0, 0, 0).

5a+b=0

We solve the homogeneous system 14a+2b+2c=0,

2a+3b+c=0
510 1 -1 -2 1 -1 -2
4 2 2| 414 2 2|,]0 6 10
2 31 2 3 1 0 5 5
1 -1 -2 1 -1 -2
Sl001 1|00 1 1
0 6 10 0O 0 14

o.a=Db =1c =0 and so the vectors are linearly
independent.
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Alternatively we can evaluate the determinant
510

4 2 2 =5(02-6)-(4-4)=-20.
2 31

Since this is non-zero the vectors are linearly
independent.

WARNING: This second method only works for n
vectors in an n-dimensional vector space.

Exercise 9: Linearly dependent. Whenever you have
more vectors than the dimension of the vector space from
which they come, they must be linearly dependent.

Exercise 10:
a d e
A 3 x 3 symmetric matrix has the form |d b f
e f ¢
Clearly
1 0O 0O 0 O 0 0 O 010
000/ |010 (000 [LO0oO]
0 0O O 0O 0 0 1 0 0O
0 0 1 000
0 0 0f |0 0 1]isabasisso thedimension is 6.
1 0 O 010
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Exercise 11:
dim(U nV) =dim(U) + dim(V) — dim(U + V)
=4+5-7=2.
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